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ABSTRACT
Purpose To develop a population physiologically-based pharmaco-
kinetic (PBPK) model for simvastatin (SV) and its active metabolite,
simvastatin acid (SVA), that allows extrapolation and prediction of their
concentration profiles in liver (efficacy) and muscle (toxicity).
Methods SV/SVA plasma concentrations (34 healthy volunteers)
were simultaneously analysed with NONMEM 7.2. The imple-
mented mechanistic model has a complex compartmental struc-
ture allowing inter-conversion between SV and SVA in different
tissues. Prior information for model parameters was extracted
from different sources to construct appropriate prior distributions
that support parameter estimation. The model was employed to
provide predictions regarding the effects of a range of clinically
important conditions on the SV and SVA disposition.
Results The developed model offered a very good description of
the available plasma SV/SVA data. It was also able to describe
previously observed effects of an OATP1B1 polymorphism
(c.521 T>C) and a range of drug-drug interactions (CYP inhibition)
on SV/SVA plasma concentrations. The predicted SV/SVA liver and
muscle tissue concentrations were in agreement with the clinically
observed efficacy and toxicity outcomes of the investigated
conditions.
Conclusions A mechanistically sound SV/SVA population model
with clinical applications (e.g., assessment of drug-drug interaction
and myopathy risk) was developed, illustrating the advantages of
an integrated population PBPK approach.
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ABBREVIATIONS
AUC Area under the concentration-time curve
CLR Clarithromycicn
Cmax Maximum concentration
CYP Cytochrome P450
DDIs Drug-drug interactions
DTZ Diltiazem
ERY Erythromycin
F Oral bioavailability
Fa Fraction absorbed into gut wall
Fg Fraction reaching gut wall that escapes

intestinal first-pass metabolism
Fh Fraction reaching liver that escapes hepatic

first-pass metabolism
FREC Parameter that quantifies the magnitude

of the recycling (inter-conversion) process
FOCE-I First order conditional estimation method

with interaction
HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A
IMPMAP Monte-Carlo importance sampling assisted

by mode a posteriori estimation
ITZ Itraconazole
IVIVE In vitro - in vivo extrapolation
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IW Inverse-Wishart distribution
LDL Low-density lipoprotein
LOQ Limit of quantification
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
OATP Organic anion transporting polypeptide
PBPK Physiologically-based pharmacokinetic
PK/PD Pharmacokinetic/pharmacodynamic
RSE Relative standard error
SNP Single nucleotide polymorphism
SV Simvastatin (lactone form)
SVA Simvastatin acid (acid form)
VPC Visual predictive check

INTRODUCTION

Simvastatin is a HMG-CoA reductase inhibitor, commonly
used to treat lipid disorders and reduce the probability of
a cardiovascular event in high-risk individuals [1,2]. It is
administered in an inactive lactone form (SV) which needs
conversion to simvastatin acid (SVA) in order to become
active [3]. This conversion can be achieved non-
enzymatically by hydrolysis and enzymatically by
carboxylesterases present in different tissues (especially liver
and small intestinal wall) and by paraoxonases in plasma
[4]. Although the conversion of the lactone (SV) to the
acid (SVA) form is predominant [4], SVA can be back-
converted to SV either via an acyl-glucuronide intermedi-
ate that undergoes spontaneous cyclisation or via a coen-
zyme A-dependent pathway [5]. In addition to this com-
plex inter-conversion process, both SV and SVA undergo
CYP3A4/5 oxidative metabolism [6,7]. Due to the exten-
sive hepatic and intestinal first-pass metabolism less than
5% of a SV dose reaches the systemic circulation [1].

The motivation to develop a model that accurately de-
scribes the complex SV/SVA pharmacokinetics derives main-
ly from the fact that the risk of muscle toxicity (themost serious
adverse effect of the drug) is at least partly of a pharmacoki-
netic origin [8]. More specifically factors such as high dose,
concomitant administration of drugs that interact with SV/
SVA at the pharmacokinetic level (e.g., CYP3A inhibition) and
a polymorphism in the gene coding for the OATP1B1 hepatic
uptake transporter (SLCO1B1 c.521 T>C, or rs4149056)
substantially increase the risk for myopathy [8]. Recently, we
have published a population pharmacokinetic model focusing
on the pharmacogenetics of simvastatin and the simultaneous
identification of several polymorphisms and demographic
characteristics that affect SV/SVA pharmacokinetics [9].
Although the reported model was adequate for the purpose
of investigation, its empirical structure and data-driven nature
could be seen as a limitation. In the absence of data from

patients receiving the drug in other conditions and without
having access to drug tissue concentrations, the model cannot
extrapolate outside the studied population, or indicate the
effects of certain conditions and population characteristics
on drug tissue concentrations. Therefore, the aim of the
current work was to develop a complex mechanistic popula-
tion SV/SVA model with a physiologically-based structure
that allows model predictions in the clinically relevant tissues,
namely liver (site of efficacy) and muscle (site of toxicity). Such
a model can be a valuable tool to extrapolate and predict the
effects of myopathy predisposing conditions, such as genetic
polymorphisms or drug-drug interactions (DDIs) on the dis-
position of SV and SVA, using in vitro data.

PBPKmodels are often used for exploratory simulations of
concentration profiles during the drug development process
and they are rarely used to analyse observed clinical data. This
can be mainly attributed to the fact that parameter estimation
in such complex models is a challenging task with many
related methodological issues which we have recently
reviewed [10]. It has been strongly recommended lately to
combine PBPK with hierarchical population modelling in
order to allow predictions not only at the individual but also
at the population level [10,11]. Parameter estimation in such
models should be performed without neglecting i) the vari-
ability in key system and drug related parameters and ii) the
uncertainty on the results of in vitro experiments or in silico
predictions that are used to inform model parameters.
Therefore the current work aims also to serve as an example
of an integrated population PBPK approach for the analysis of
clinical data (i.e. combining so called “bottom-up” and “top-
down” paradigms). The complex pharmacokinetics of simva-
statin and their clinical relevance provide an excellent case to
illustrate the advantages of a mechanistically sound popula-
tion model.

MATERIAL AND METHODS

Pharmacokinetic Data for Model Development

SV and SVA pharmacokinetic data from two clinical studies
(Study 1 & 2) conducted by Eli Lilly and Company were
pooled and used for model development. Each of the two
study protocols were reviewed and approved by an ethical
review board. The studies were conducted in accordance with
all applicable regulatory and Good Clinical Practice guide-
lines and followed the ethical principles originating in the
Declaration of Helsinki. All subjects signed an informed con-
sent document prior to participation in the studies. The de-
mographic characteristics of the participants, the sampling
times design and the methodology used to determine SV
and SVA plasma concentrations in the collected blood sam-
ples have been extensively described elsewhere [9]. Briefly,
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Study 1 involved 16 healthy volunteers who received a 40 mg
simvastatin dose followed by a second 40 mg dose 24 h later,
with rich sampling through this 48-h period. Study 2 involved
18 healthy volunteers who received a single 20 mg simvastatin
dose and were intensively sampled for a 24-h period.

Structure of the SV/SVA Physiologically-Based Model

A mechanistic model (16 compartments) was developed in
order to simultaneously describe the pharmacokinetics of
SV/SVA and the complex inter-conversion process between
them (Fig. 1). The structure of the developed model is such
that it retains a physiological-mechanistic nature only in the
parts which are relevant to the desired modelling purpose.
Therefore, the model includes a small intestinal wall, liver
vascular, liver tissue, systemic blood, muscle and rest of the
body compartments for both SV and SVA. In order to

account for the dissolution and absorption processes of the
orally administered SV, two stomach content and two small
intestinal lumen compartments referring to the solid and
dissolved drug have been additionally incorporated for
SV. Further details with regard to the model structure,
including all the model assumptions and the mass bal-
ance differential equations of the joint SV/SVA system
are provided in Supplement 1.

Use of Prior Information in the Population PBPKModel

The parameters of the developed model are mechanistic in
nature and describe actual physiological processes. Therefore,
these parameters can be informed from physiological/
biological knowledge, in vitro experiments and in silico predic-
tions. The available clinical data are limited to plasma con-
centrations and are insufficient to inform the estimation of all

Fig. 1 Structure of the developed SV (left) / SVA (right) mechanistic model. Abbreviations: kdstom dissolution rate constant in stomach contents, kdsil dissolution
rate constant in small intestinal lumen, kge gastric emptying rate constant, ksit small intestinal transit rate constant, Stom stomach content compartment, SI lumen
small intestinal lumen compartment, SI wall Small intestinal wall compartment, ka absorption rate constant from the intestinal lumen into the epithelium, Qha

hepatic artery blood flow, Qmmuscle blood flow, Qsiw small intestinal wall blood flow, Qrob “rest of the body” compartment blood flow, Qspl splachnic organs blood
flow excluding small intestinal wall, Qlv blood flow that exits the liver vascular compartment (Qsiw+Qha+Qspl), PSuinf and PSueff permeability surface product for
unbound SV influx and efflux respectively across the basolateral membrane, PSudif passive diffusion clearance across the basolateral membrane for unbound SVA,
CLuact active uptake clearance for unbound SVA across the basolateral membrane, CLintlact intrinsic clearance for lactonisation in the liver tissue, CLintCYP3A,i intrinsic
clearance for CYP3Amediated oxidative metabolism in compartment (i), CLinthydr,i intrinsic clearance for SV to SVA hydrolysis in compartment (i); the (i) subscripts
bl, lt, lv, m, siw and rob represent the systemic blood, liver tissue, liver vascular, muscle, small intestinal wall and rest of body compartments respectively.When any
of the above abbreviations is relevant to both SV and SVA, the abbreviation referring to SVA is followed by a prime.
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complex model parameters. Therefore, it was prudent to
combine the current clinical data with the available prior
information in order to aid the parameter estimation process.
In addition, the drug-related parameter values of this complex
PBPKmodel are informed from in vitro experiments or in silico
calculations and may be associated with a certain degree of
inaccuracy and/or imprecision. Hence, in the current work
the confidence in prior information related to model param-
eters was summarised in terms of appropriate statistical distri-
butions allowing parameters to move during estimation,
updating (if possible) prior knowledge with the clinical data
from the current study. However, some model parameters still
needed to be treated as fixed values particularly when the
confidence around these values was high (e.g., certain physico-
chemical properties, fractions unbound, blood to plasma ra-
tios etc.) in order to reduce the dimensionality of the parameter
estimation process. Prior information was considered during
parameter estimation using the prior functionality [12,13] in
NONMEM 7.2 (ICONDevelopment Solutions, Ellicott City,
MD). Briefly, in this method the objective function upon
minimisation includes a penalty term which reflects a repre-
sentation of the available prior knowledge with regards to
model parameters. Such an approach differs from a typical
Bayesian method in that it does not generate a posterior
distribution of the parameter estimate, but rather outputs
maximum a posteriori (MAP) point estimates.

Population Pharmacokinetic Analysis

Population pharmacokinetic modelling was performed using
nonlinearmixed-effectsmodelling software (NONMEM, version
7.2). Additional investigations of the NONMEM output, model
simulations, as well as the statistical and graphical analyses, were
performed in Matlab R2012a (The MathWorks, Inc., Natick,
Massachusetts, USA). The developed mechanistic model was
coded as a system of 16 ordinary differential equations (see
NONMEM code in Supplement 9). The differential equations
were evaluated with ADVAN13, which corresponds to an
LSODA differential equation solver that can handle a mixed
system of both stiff and non-stiff differential equations. The
population analysis was performed using the first order condi-
tional estimation method with interaction (FOCE-I) and the
results presented in this manuscript principally refer to this
method. However, the need for decreased computation times
for convergence in such a complex mechanistic model motivated
also the evaluation of alternative estimation algorithms.
Therefore, estimation was also performed with the Monte-
Carlo importance samplingmethod assisted bymode a posteriori
estimation, namely IMPMAP in NONMEM 7, parallelised in 7
cores of an Intel® Xeon® X5570 processor (2.93 GHz, 24 GB
ofRAM). Further information and practical details regarding the
application and the set-up of this estimationmethod are provided
in Supplement 2 (section 1).

In total 550 SV and 550 SVA concentrationmeasurements in
plasma derived from the two pharmacokinetic studies described
above were analysed simultaneously. In that dataset, 41/550 SV
and 90/550 SVA plasma concentration measurements were
below the limit of quantification (LOQ) and these were substitut-
ed with (LOQ/2) [14]. The more sophisticated M3 method (a
method that retains observations below the LOQ as censored
data and maximizes the likelihood to predict these observations
below the LOQ) [14], was not applied in the current work.
Although this method is generally recognised as the optimal
way to treat data below the LOQ, it was not feasible here due
to the complexity of themodel whichwould lead to unacceptable
long runtimes. However, the selected approach to treat data
below the LOQ was further validated with a visual predictive
check (VPC) variation in which the agreement between the
fraction of observed and model-predicted concentrations below
the LOQ can be also examined [15]. The residual unexplained
variability was modelled for both SV and SVA concentrations
with an additive error model on the log-transformed data (equiv-
alent to an exponential errormodel on the un-transformed data).
No prior information was provided with regard to the residual
variability random effect terms.

The structural model parameters can be classified as
system-related and drug-related. The former were considered
known at the fixed effect (typical individual) level, based on
physiological/biological information. An overview of the
physiological system-related parameter values of the model
is provided in Table I. All the system-related parameters and
their population variability are extensively described in
Supplement 3. An overview of the drug-related parameters,
their assigned values when they are considered fixed and their
assigned prior distributions when they are to be estimated are
provided in Table II. All the drug-related model parameters,
the derivation of their prior distributions and the stochastic
model regarding their population variability are extensively
described in Supplement 4.

The structural model parameters which are upon estima-
tion were log-transformed (the natural log of the parameters
was estimated) to allow sampling of the log-parameters from
the multivariate normal that has been assigned for the priors
related to the fixed effects [16] (see NONMEM code in
Supplement 9). Moreover, in this way negative values for the
parameters in the untransformed domain are avoided. In total
14 drug-related parameters (fixed effects) were estimated. For
the majority of these parameters (10 out of 14) informative
priors were provided (Table II) and parameter estimation was
performed at the level of the prior knowledge (e.g., at the level
of intrinsic rather than whole hepatic clearance) to minimise
as much as possible additional transformations of the prior
distributions (see Supplement 4 section 1 for further discus-
sion). The remaining 4 parameters were estimated solely from
the data due to the lack of any prior knowledge. For these
parameters, uninformative priors were provided by setting the
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variance of the normal prior that refers to the natural loga-
rithm of the parameter of interest to the value of 10,000. This
is equivalent to the standard value of 0.0001 that is used as the
precision of an uninformative prior in Bayesian analyses. The
identifiability of the structural model parameters is discussed
in Supplement 4 (section 3).

With regard to the majority of the inter-individual variabil-
ity random effect terms, prior information was unavailable. In
this case, uninformative priors were designated by setting the
degrees of freedom of the associated inverse-Wishart (IW)
distributed prior equal to the dimension of each omega block
[16] (see NONMEM code in Supplement 9). In the case of
model parameters for which prior information regarding their
population variability was available (e.g., gastric and small
intestinal residence times, see Supplement 3), informative
priors were provided and the exact values of the associated
IW degrees of freedom were calculated with the analytical
expressions described by Dokoumetzidis and Aarons [17].

Covariate model building was not attempted as the aim of the
current work was the development of a base population mech-
anistic model and all the individuals included in the analysis were
healthy volunteers. However as explained in Supplement 3, total
body weight and body surface area are a priori defined to affect
some of the system-related model parameters (e.g., organ vol-
umes, cardiac output) with fixed covariate relationships.
Genotype information was also available for these individuals
for 18 genetic polymorphisms of seven genes (3, 3, 1, 1, 7, 2, and
1 polymorphisms in the ABCB1, ABCG2, CYP3A4, CYP3A5,
SLCO1B1, SLCO2B1, and PPARA genes, respectively).
However, the development of a population pharmacokinetic
model with genetic covariates was the focus of a previous work
[9] with a much larger sample size. However, it should be noted
that none of the individuals studied in the current work was
homozygous (CC) for the OATP1B1 c.521 T>C SNP
(rs4149056), a genotype that has the highest impact on SVA
pharmacokinetics and is acknowledged to play a clinically im-
portant role [8,18].

Model Validation

Evaluation of traditional PK/PD models usually consists of
thorough diagnostics that mainly focus on how well the model
describes the fitted data [19]. However, validation of a popula-
tion physiological model, such as the one developed here, should
be performed under a slightly different framework borrowing
elements from the PBPK field [20]. This is firstly because the
model structure and several parameter values are dictated from
the underlying physiology and are not subject of model building.
In addition, such models are mainly developed for their ability to
perform extrapolation outside the studied conditions and not to
solely describe the observed data [10,21]. In such a situation
although a good description of the observed plasma concentra-
tion profiles is a good diagnostic of the model’s performance, it is

Table I System-Related Parameter Values Applied to the SV/SVA Pharma-
cokinetic Model

Parameter Value Reference (a)

fsiw 0.0091 Literature

flt 0.0257 Literature

flv 0.00296 Literature (b)

fbl 0.0743 Literature

fm 0.4 Literature

fspl 0.0114 Literature (c)

frob 0.4765 Calculated (d)

Rsil (cm) 1.61 Calculated (e)

kge (h−1) 4 Literature (f)

ksit (h−1) 0.28 Literature (f)

qsiw 0.105 Literature

qha 0.065 Literature

qm 0.145 Literature

qspl 0.095 Literature (g)

qrob 0.590 Calculated (h)

Vstom (L) 0.05 Literature

Vsil (L) 0.608 Literature

fi represents the fractional volume of tissue-compartment (i) with respect to
total body weight; qi represents the fractional blood flow of tissue-
compartment (i) with respect to the cardiac output; subscripts bl, lt, lv, m,
siw, ha, spl and rob are referring to systemic blood, liver tissue, liver vascular,
muscle, small intestinal wall, hepatic artery, “rest of splachnic” and “rest of
body” respectively. For example the muscle tissue in the model represents
40% of the total body weight and it is receiving 14.5% of the cardiac output of
an individual. Vstom and Vsil refer to the volume of stomach content and small
intestinal lumen respectively; Rsil represents the radius of small intestinal
lumen; kge and ksit represent the gastric emptying and small intestinal transit
rate constants respectively. For further details on system-related model pa-
rameters see Supplement 3
a References for parameter values informed from literature are reported in
Supplement 3 (see Table S3.1)
b The fractional volume of the liver vascular compartment has been calculated
as 11.5% of the liver tissue fractional volume
c The fractional volume of the “rest of splachnic” compartment (see Supple-
ment 1) has been calculated as the sum of the fractional volumes of stomach,
large intestine, pancreas and spleen which are 0.0021, 0.0053, 0.0014 and
0.0026 respectively
d The fractional volume of the “rest of body” compartment has been calcu-
lated as 1 minus the sum of other fractional volumes in the model
e The reported radius of small intestinal lumen has been calculated as ex-
plained in Supplement 3 (Eqs. S3.4–S3.11) using the average weight and
height of the individuals in the analysed datasets. Note that this is only a
reference-typical value as this parameter is not fixed across the population (see
Supplement 3)
f Note that the gastric emptying and the small intestinal transit rate constants
reported here are only reference-typical values as these parameters are not
fixed across the population (see Supplement 3)
g The fractional blood flow of the “rest of splachnic” compartment (see
Supplement 1) has been calculated as the sum of the fractional blood flows
of stomach, large intestine, pancreas and spleen which are 0.01, 0.045, 0.01
and 0.03 respectively
h The fractional blood flow of the “rest of body” compartment has been
calculated as 1 minus the sum of other fractional blood flows in the model
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not necessarily sufficient to demonstrate the model’s adequacy.
In the current work, validation of the developed mechanistic
model was performed with the following steps. Firstly, as model

parameters represent real physiological processes the parameter
estimates were assessed in terms of their physiological/
mechanistic plausibility. Secondly, model evaluation diagnostics

Table II Drug-Related Parameter Values Applied to the SV/SVA Pharmacokinetic Model

Model parameter SV SVA Reference

logP/logD7.4 4.68 4.54/1.45 2.4, 2.5

ρ (g/mL) 1.2 – 2.1

D (cm2/min) 4.04·10−4
– 2.1

h (μ) 9.18 – 2.1

r (μ) 9.18 – 2.1

Solsil (μg/mL) 16.4 – 2.1

Solstom (μg/mL) 14.5 – 2.1

BP 0.57 0.56 2.3

fubl 0.0235 0.0979 2.4

fult indirectly (b) 0.0919 2.4

fulv 0.0235 0.0979 2.4

fum indirectly (b) – 2.4

furob 0.0264 – 2.4

fusiw 1 1 2.4

KPuT:P,lt (7.344, 0.539) – 2.5

KPuT:P,m (6.782, 0.539) (0.476, 0.539) 2.5

KPT:B,rob (Uninformative) (a) (Uninformative) (a) 2.5

Peff (cm/h) (0.437, 0.703) (a) – 2.2

PSudif (L/h) – 49.42 2.6

PSuinf (L/h) 874200 – 2.6

PSueff (L/h) 874200 – 2.6

CLuact (L/h) – (Uninformative) (a) 2.6

CLintCYP3A,vitro
(c) (3.124, 0.346) (a) (−2.948, 0.094) (a) 2.7, 2.8

khydr,pl (h
−1) (−2.214, 0.068) – 2.9

khydr,buff (h
−1) (−3.650, 0.0015) – 2.9

khydr,S9 (h
−1) (−2.752, 0.0061) – 2.9

khydr,hybrid (h
−1) (Uninformative) (a) – 2.9

klact,S9 (h
−1) – 0.0024 2.10

CLintgluc,vitro
(d) – (−0.997, 0.108) 2.10

For the parameters which are upon estimation, the assigned prior distributions are described inside parentheses.When an informative prior has been assigned, the
mean and variance (μ, σ2 ) of the normal prior that refers to the natural logarithm of the parameter are reported. Parameter values not in parentheses are
considered fixed. Further details regarding each parameter and the derivation of the assigned values/priors are provided in Supplement 4 and specifically in the
section reported in the Reference column

ρ particle density, D diffusion coefficient, h diffusion layer thickness, r particle radius, Solsil and Solstom solubility in small intestinal lumen and stomach content
compartments respectively, BP blood-to-plasma ratio, fubl, fult, fulv, fum, furob and fusiw fraction unbound in blood, liver tissue, liver vascular, muscle, rest of body and
small intestinal wall compartments respectively, KPuT:P,lt and KPuT:P,m tissue to plasma unbound partition coefficient for liver and muscle tissue respectively, KPT:B,rob
tissue to blood partition coefficient for the rest of body compartment, Peff effective permeability to the small intestinal wall, PSudif passive diffusion clearance across
the basolateral membrane for unbound SVA, PSuinf and PSueff permeability surface product for unbound SV influx and efflux respectively across the basolateral
membrane, CLuact active uptake clearance for unbound SVA across the basolateral membrane, CLintCYP3A,vitro in vitro-determined intrinsic CYP3A clearance, khydr,pl,
khydr,buff and khydr,S9 in vitro-determined hydrolysis rate constants in plasma, bufferpH=7.4 (referring to muscle) and liver S9 respectively, khydr,hybrid hybrid hydrolysis
rate constant in the small intestinal wall and rest of body compartments, klact,S9, in vitro-determined lactonisation rate constant in liver S9 (referring to other than
glucuronidation-mediated lactonisation), CLintgluc,vitro in vitro-determined intrinsic glucuronidation clearance (referring to glucuronidation-mediated lactonisation)
(a) Inter-individual variability terms were applied in these model parameters (see Supplement 4 section 4)
(b) These parameters are indirectly estimated as they are parameterised in terms of the directly estimated SV tissue partition coefficients in liver and muscle (see
Supplement 4, Eq. S4.12)
(c) Expessed in μL/min/pmol of CYP3A for SV and mL/min/mg of microsomal protein (MP) for SVA
(d) Expressed in μL/min/mg of microsomal protein
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routinely used in population pharmacokinetic modelling (good-
ness of fit plots, VPC, bootstrapping procedure) were employed
to assess the robustness of parameter estimates and the ability of
the model to adequately describe the observed data and their
variability (see Supplement 5 section 1 for further details).
Subsequently, an independent (not fitted) dataset consisting of
SV/SVA plasma concentrations determined in 28 healthy vol-
unteers [22] was used for external model validation (see
Supplement 5 section 2 for further details). Finally, the model
was evaluated in terms of its predictive performance in situations
outside of the studied population and conditions where some of
the mechanisms of the system are perturbed (e.g., genetic poly-
morphisms and DDIs), (see model applications below).

Simulation of SV/SVA Concentration Profiles
and Determination of Additional Parameters
of Mechanistic Interest

In addition to plasma, the developed model was used to predict
concentration profiles of both forms in the other clinically
relevant tissues which are the liver (site of action) and themuscle
(site of toxicity). The typical population parameter estimates of
the model and a weight and height of 70 kg and 170 cm
respectively were used to perform these simulations.
Furthermore, the developed population model was used to
perform simulations and investigate additional parameters of
mechanistic interest and the magnitude of their population
variability. These included SV bioavailability (F) and its con-
stituent components i.e., the fraction absorbed into gut wall (Fa),
the fraction reaching gut wall that escapes intestinal first-pass
metabolism (Fg) and the fraction reaching liver that escapes
hepatic first-pass metabolism (Fh); and finally the recycling
fraction (FREC), a parameter that quantifies the magnitude of
the recycling (inter-conversion) process. The procedure to cal-
culate these parameters and their population variability is de-
scribed in Supplement 5 (section 3).

Applications of the Developed Model - Extrapolation

The developed population model was evaluated with regard
to its potential for extrapolation in conditions where mecha-
nisms of the developed system are perturbed. The investigated
scenarios are related firstly to the effect of the clinically im-
portant polymorphism c.521 T>C (rs4149056) in the gene
coding for the OATP1B1 transporter and secondly to a range
of clinically important simvastatin DDIs, as described below.

Effect of the OATP1B1 c.521 T>C (CC) Genotype on SVand SVA
Disposition

None of the individuals studied in the current work was
homozygous (CC) for the OATP1B1 c.521 T>C SNP.
Therefore, published data were digitally extracted (GetData

Graph Digitizer 2.26) from a previous clinical study [18] in
which mean SV/SVA plasma concentrations were available
for both the homozygous wild type TT (n=16) and the ho-
mozygous variant CC (n=4) genotype. The first step was to
assess the ability of the developed model to describe these
observed data for the homozygous wild type TT group.
Therefore a simulation was performed using the typical pa-
rameters of the developed mechanistic model and the mean
population characteristics of the TT group in the reported
clinical study (weight of 68 kg and height of 174 cm). The
model simulated typical SVA plasma concentration profile
was compared with the observed data to assess the degree of
agreement.

Subsequently, conditionally on the success of this first step,
the second aimwas to assess the ability of the developedmodel
to describe the observed SVA data for the homozygous var-
iant CC group. If mechanistically correct, the developed
model should have the ability to describe the observed data
after only adjusting the model parameter where the genotype
effect is manifested, i.e., the SVA active uptake clearance
(CLuact). The mean population characteristics of the CC
group in the reported study (weight of 84 kg and height of
180 cm) were used as model input. All the parameters of the
developed model were fixed to the population-typical values
and a single covariate parameter representing the in vivo effect
of the CC genotype on SVA active uptake clearance was
estimated using the observed mean SVA data of the CC
group. Estimation of this single parameter was performed in
Matlab R2012a using the lsqnonlin function and the “trust-
region reflective” algorithm, which are designed to solve non-
linear least-squares curve fitting problems. The model-
simulated typical SVA plasma concentration profile for the
CC genotype was then compared with the observed data to
assess the degree of agreement.

Finally, conditionally on the success of the second aim, the
last step was to investigate the effect of the CC genotype not
solely on the concentrations in plasma but also in the clinically
relevant liver and muscle tissues where data were not avail-
able. The model-predicted change in the SVA exposure in
these tissues between the wild type (TT) and the variant (CC)
genotype was calculated. In addition, the effect of this geno-
type on the ratio between the SVA unbound liver tissue
concentrations and SVA unbound liver plasma concentra-
tions (a dynamic representation of the SVA KPuuliver) was
also investigated.

Effect of Clinically Important DDIs on SV and SVA Disposition

The effect of a range of different CYP3A inhibitors on SV/
SVA disposition was selected to be evaluated in the current
work, namely itraconazole (ITZ) 200mg, erythromycin (ERY)
500 mg, clarithromycin (CLR) 500 mg and diltiazem (DTZ)
120 mg. The selection was based firstly on the fact that the

1870 Tsamandouras et al.



interaction between these CYP3A inhibitors and simvastatin
has been clinically studied and the degree of interaction is
clinically important (associated with specific recommenda-
tions in simvastatin package label). Secondly, this list includes
DDIs with various degrees of complexity ranging from com-
petitive to mechanism-based inhibition and to DDIs where
both the parent compound and its metabolite have CYP3A
inhibition capability. Therefore, the model and its assump-
tions were tested over a number of different conditions which
were not part of the model development set.

The general workflow to predict the effect of these DDIs on
SV/SVA disposition is briefly described below. Firstly con-
centration profiles of inhibitors of interest were generated with
Simcyp v13 using the minimal PBPK model [23]. The stan-
dard assumption associated with this model when applied for
DDI prediction is that the simulated unbound concentrations
in portal vein and liver reflect those at the enzyme site in the
small intestinal wall and liver respectively [23]. Subsequently
these generated concentration profiles were used after inter-
polation (with the “interp1” function in Matlab R2012a) as
forcing functions for the interaction in the small intestinal wall
and liver tissue compartments of the developed SV/SVA
mechanistic model. The differential equations in these model
compartments were modified accordingly in order to describe
the DDI mechanism in the presence of the inhibitor(s) and the
consequent decrease in SV/SVA CYP3A metabolism. The
mathematical relationships used to model the interaction, the
relevant input parameters such as inhibition constants and all
the other relevant information for each of the evaluated DDIs
are summarised in Supplement 6. Model predictions were
performed using the typical parameters of the developed
model and the mean population characteristics (e.g. weight)
in each of the four investigated DDI studies. For each of these
interactions, the model-predicted change in SV/SVA plasma
Cmax and AUC was calculated and compared to the ob-
served values from reported clinical DDI studies. The inter-
action effects on the liver and muscle SV/SVA concentrations
were also investigated.

RESULTS

SV/SVA Physiological Population PK Model

The parameter estimation process together with a covariance
step were completed successfully for the developed population
model with the FOCE-I method. The estimation and covari-
ance steps were completed in 18.7 and 42.2 h, respectively.
The informative prior B, (Supplement 4 section 2.2) was
selected to describe the prior knowledge regarding SV per-
meability from the lumen to the small intestinal wall in the
final model as it increased model stability. The parameter

estimates of the final population pharmacokinetic model are
reported in Table III. Relative standard errors (RSE) were less
than 25 and 50% for all the estimated fixed and random
effects respectively. As was expected, the RSE with respect
to model parameters with very strong prior information are
small, as the parameter estimates in such situations are dictat-
ed from the prior knowledge.

The NONMEM-obtained MAP point estimates of the
population model parameters which were supported by
informative priors were plotted on top of the distributions
representing the available prior knowledge (prior uncer-
tainty in a population model parameter), in order to
visualise the degree that these estimates were updated
from the priors (Fig. 2). It was observed that many of
the structural model parameters were indeed informed
from the available data updating prior knowledge
(Fig. 2). In particular, this was evident for the SV
CYP3A intrinsic clearance (CLintCYP3A,vitro), the SV per-
meability to the small intestinal wall (Peff) and the SV/
SVA partition coefficients (e.g., KPuT:P,m). In contrast, for
model parameters which cannot be substantially informed
from the plasma data and for which strong prior informa-
tion was available, the MAP estimates shrunk towards the
prior (Fig. 2). Specific examples are the parameters
representing SV to SVA hydrolysis in muscle (khydr,buff)
and liver tissue (khydr,S9) and the SVA to SV lactonisation
in liver tissue (CLintgluc,vitro). In addition, the estimates for
the inter-individual variability variance terms associated
with gastric (ηGRT) and small intestinal (ηSIRT) residence
times were governed (Fig. 2) by the provided strong prior
knowledge (Supplement 3 section 2). The population mod-
el parameters for which completely uninformative priors
were provided (Table II) were adequately informed from
the available data evidenced by the associated low RSE
(e.g., CLuact, Table III).

The parameter estimation process with the parallelised
IMPMAP method was also completed successfully. All the
associated parameter estimates and a complete comparison
with the FOCE-I estimates are provided in Supplement 2
(section 2). Overall, the parameter estimates from the
FOCE-I and IMPMAP methods were very similar with the
latter method showing substantial improvements in conver-
gence time.

The first step towards the validation of this mechanistic
populationmodel was to assess the physiological /mechanistic
plausibility of the parameter estimates. None of these param-
eter estimates could be regarded as physiologically non-
realistic (see Discussion for further comments). In order to
aid the assessment of the inter-conversion parameter esti-
mates, the SV-SVA inter-conversion rate constants applied
in the different model compartments were calculated and
reported in Supplement 7 (Table S7.1). The magnitude of
SV to SVA hydrolysis rate constants in the different model
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compartments was: liver tissue > > systemic blood, liver
vascular compartment > small intestinal wall, rest of body
compartment > muscle. The lactonisation rate constant in the
liver tissue was calculated to be 1.1% of the hydrolysis rate
constant in the same tissue.

Subsequently, the next step was to assess the robustness of
parameter estimates and the ability of themodel to adequately
describe the observed (fitted) plasma concentrations and their
variability. From the 114 samples of the bootstrapping proce-
dure, a subset (n=104) with successfully converged mod-
el fits was used to obtain descriptive statistics regarding
the parameter estimates. The median time for conver-
gence across these bootstrap samples was 29.5 h. The
parameter estimates and relative standard errors obtain-
ed from the bootstrapping procedure are also reported
in Table III. Although the bootstrap sample size is
relatively small (due to the computational burden of
the model), very good agreement was observed between
NONMEM estimates/standard errors from the original
dataset and the bootstrapping procedure (Table III),
providing additional evidence regarding model stability
and absence of bias. The only exception to this agree-
ment (Table III) was the standard error of the inter-
individual variability estimate of the SVA CYP3A-
mediated intrinsic clearance (CLint′CYP3A,vitro). The dif-
ficulty associated with the estimation of this random
effect term is understandable when considering that
due to the permeability-limited hepatic distribution of
SVA, the observed population variability in plasma con-
centrations is affected to a much higher degree by the
population variability in active hepatic uptake clearance
rather than the variability in intrinsic metabolic clear-
ance [24] (see Supplement 7 section 1 for further
discussion).

Typical goodness of fit plots with respect to the developed
population model are presented in Supplement 7 and specif-
ically Figures S7.1 and S7.2 for SV and SVA respectively.
None of these plots indicated any misspecifications in the
structural and statistical model. A visual predictive check
(VPC) of the developed physiological population pharmaco-
kinetic model stratified by study is presented in Fig. 3. It can be
observed that the model has a very good predictive perfor-
mance as it adequately reflects the data and their variability
for both SV and SVA across both studies.

The results of the external model validation are presented
in Supplement 7 (Figure S7.3) in the form of a visual predic-
tive check of the model with regard to the non-fitted indepen-
dent dataset (as described in Supplement 5 section 2).
Although a small degree of bias can be observed (mainly for
SVA), the developedmodel shows a very good performance in
terms of prediction of both average concentration profiles and
population variability. This is of significant importance when
considering that the data used for external validation were

Table III Parameter Estimates of the Final SV/SVA Population Pharmaco-
kinetic Model

Model parameter NONMEM
estimate
(RSE%) (a)

Bootstrap
estimate (b)

(RSE%) (a)

Structural model (c)

Peff (cm/h) 1.2738 (20.00) 1.3301 (21.31)

CLintCYP3A,vitro (μL/min/pmol
CYP3A)

13.874 (7.97) 14.208 (8.61)

KPuT:P,m 4315.6 (23.72) 4362.8 (21.12)

KPT:B,rob 19.106 (7.34) 18.716 (7.98)

KPuT:P,lt 2892.9 (18.45) 3033.6 (15.68)

CLint′CYP3A,vitro (mL/min/mg of MP) 0.0513 (12.55) 0.0504 (18.41)

KPu′T:P,m 1.3965 (18.66) 1.4562 (21.90)

KP′T:B,rob 0.9501 (17.33) 1.0476 (24.51)

CLuact (L/h) 8266.8 (21.23) 8001.1 (18.70)

khydr,pl (h
−1) 0.1300 (8.82) 0.1264 (7.77)

khydr,buff (h
−1) 0.0260 (0.003) 0.0260 (0.005)

khydr,S9 (h
−1) 0.0639 (0.37) 0.0640 (0.36)

CLintgluc,vitro (μL/min/mg of MP) 0.3701 (0.58) 0.3703 (1.79)

khydr,hybrid (h
−1) 2.7732 (13.87) 2.7457 (13.24)

Inter-individual variability (%CV) (d)

GRT 37.00 (0.001) 37.00 (0.001)

SIRT 41.96 (0.001) 41.96 (0.001)

Peff 118.68 (34.81) 118.47 (29.45)

CLintCYP3A,vitro 38.32 (41.53) 36.51 (41.12)

KPT:B,rob 36.49 (25.84) 35.19 (25.53)

CLint′CYP3A,vitro 38.62 (49.71) 38.30 (140.53)

KP′T:B,rob 69.81 (41.56) 61.00 (64.23)

CLuact 70.77 (39.16) 71.87 (54.48)

khydr,hybrid 63.75 (32.84) 59.86 (39.48)

Residual variability (e)

epsSV 0.272 (15.15) 0.268 (15.38)

epsSVA 0.117 (14.96) 0.115 (16.57)

When any of the above parameters is relevant to both SVand SVA, the parameter
abbreviation referring to SVA is followed by a prime. Abbreviations are exactly as
listed in Table II. Additional abbreviations used here are: MP: microsomal protein;
GRTand SIRT: gastric and small intestinal respectively residence time
(a) Relative standard errors (RSEs) were calculated as: (standard error/esti-
mate)⋅100. For the structural model parameters, normal/log-normal reverse
algebra (Supplement 4 section 1) was utilised to obtain the RSEs in the domain
of the reported original parameter instead of the log-transformed domain
(b) Estimates are reported as the median from the bootstrap samples (n=104)
(c) Typical population estimates for the structural model parameters were
derived after natural exponentiation of the estimated log-transformed
parameter
(d) Coefficient of variation (% CV) is calculated as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eω2−1ð Þ
p

⋅100 . For GRT
and SIRTwhich have been assumed to follow a logit-normal generalisation,
the expected value and variance of the distribution were computed by
numerical integration in order to calculate the reported CV
(e) Residual variability is reported as variance terms (an additive error model
was applied on the log-transformed data). epsSV and epsSVA correspond to the
residual error variance associated with SV and SVA plasma concentrations
respectively
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from a completely independent study [22] with a differ-
ent study design, different analytical methodology and
different population characteristics compared to the
studies used for model development (discussed in
Supplement 5 section 2). Therefore, additional confi-
dence was provided that the parameter estimates of
the developed model are not specific only for the pop-
ulation used for model development and use of the
model outside the studied population and experimental
conditions is justifiable.

As explained in the methods section, the developed
model was used to predict typical concentration profiles
for both SV and SVA not only in plasma but in the
other clinically relevant tissues which are the liver
(efficacy) and the muscle (toxicity). These typical con-
centration profiles are presented in Supplement 7
(Figure S7.4).

SV bioavailability (F) for a typical individual was predicted
to be 4.21%. The constituent components of F for a typical
individual were 0.6195, 0.389 and 0.1747 for Fa, Fg and Fh
respectively. Population variability for bioavailability and its
constituent components was also assessed. The 90% popula-
tion prediction intervals for F, Fa, Fg and Fh were (1.11,
9.98%), (0.263, 0.852), (0.246, 0.556) and (0.089, 0.351) re-
spectively. It should be clearly noted that these parameters
and their population variability are not direct outcome of
parameter estimation but are calculated with a simulation-
based procedure that takes advantage of the mechanistic
model structure (Supplement 5 section 3). The magnitude of
the acid-lactone back-conversion (recycling) process was de-
termined to be minor, as in a typical individual the recycling
fraction (FREC) parameter was calculated to be 0.91%.
Population variability in FREC was also assessed and the
90% population prediction intervals were (0.48, 1.63%).

Fig. 2 MAP point estimates (red
lines) of the population model
parameters which were supported
by informative priors, plotted on
top of the distributions (grey areas)
representing the available prior
knowledge (uncertainty in a
population model parameter). The
prior modes are represented with
black dotted lines. All subplots are
referring to the natural log of
structural model parameters apart
the two bottom subplots that are
referring to the inter-individual vari-
ability variance terms (η) associated
with gastric (ηGRT) and small intes-
tinal residence time (ηSIRT). When
any of the above parameters is rel-
evant to both SV and SVA, the pa-
rameter abbreviation referring to
SVA is followed by a prime. Abbre-
viations are exactly as listed in
Table II.
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Model Applications

Effect of the OATP1B1 c.521 T>C (CC) Genotype on SVand SVA
Disposition

The developed model was able to very accurately describe the
observed SVA plasma data [18] for the OATP1B1
c.521 T>C homozygous wild type (TT) genotype. A
very high degree of agreement was observed between
the model-predicted typical profile and the observed
SVA concentrations in the TT individuals (Fig. 4b).
The CC genotype for this locus was estimated to de-
crease the SVA in vivo active uptake clearance into the
hepatocytes (CLuact) by 90.2% (the fractional change
was estimated as 0.902 with a standard error of
0.012). With the inclusion of only this covariate effect
the developed mechanistic model was able to very ade-
quately describe the observed plasma SVA data for the
CC genotype group as well (Fig. 4b).

Taking advantage of the model’s mechanistic structure,
SV/SVA liver and muscle tissue concentrations were predict-
ed for both the TT and CC genotypes. These concentration

profiles are presented in Fig. 4. It can be observed that this
polymorphism has no effect on the concentration profiles of
the lactone form (SV) in plasma, liver and muscle (Fig. 4a). In
contrast, this polymorphism has a substantial effect on the
disposition of the acid form (SVA). The SVA plasma and
muscle concentrations in individuals with the variant CC
genotype are significantly increased compared to the wild-
type TT genotype (Fig. 4b). Specifically in both plasma
and muscle tissue the SVA exposure obtained from model
simulation (AUC0–24) is increased by approximately 171%
in the CC variant genotype. However, the SVA concen-
trations in the site of action (liver) are only slightly affect-
ed, as the SVA liver exposure is only decreased by ap-
proximately 2% in the CC variant genotype (Fig. 4b). The
effect of this genotype on the ratio between the SVA
unbound liver tissue concentrations and SVA unbound
liver plasma concentrations (a dynamic representation of
the SVA KPuuliver) is illustrated in Supplement 7
(Figure S7.5). As expected, the equilibrium SVA
KPuuliver is much smaller for the CC genotype (3.2 com-
pared to 31.2 for TT) due to the decreased penetration of
SVA into the hepatocytes.

Fig. 3 Visual predictive check (VPC) of the developed population model stratified by study for both SV (a) and SVA (b) plasma concentrations. In the upper
panels, closed circles represent the observed plasma concentrations; highlighted with grey are the areas between the 5th and 95th percentiles of model simulations,
whereas the black solid line represents the median; the horizontal dashed black line represents the limit of quantification. In the lower (smaller) panels, grey areas
represent the simulation-based 95% confidence intervals for the fraction of model simulated samples below the limit of quantification (BQL) at each time point,
whereas the black solid line represents the median; the actual observed fraction of BQL samples at each time point are represented with closed circles.
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Effect of Clinically Important DDIs on SV and SVA Disposition

The developed model successfully predicted the effect of a
range of CYP3A inhibitors on the pharmacokinetics of both
SV and SVA. All the DDI model predictions are numerically
summarised and compared to the observed data from clinical
studies in Supplement 7 (Table S7.2). An overview regarding
the degree of the model predictions success is presented in
Fig. 5. It was observed that the developed model generally
predicts the increase in both SV and SVA PK parameters
(AUC and Cmax) within 1.5-fold of the observed values
(Fig. 5). The only DDI effect that was predicted outside of this
range was the effect of ITZ on SV Cmax; however, even this
model prediction still lies within two-fold of the observed
value. It should be also noted that the reported ITZ interac-
tion effects are related with a degree of uncertainty due to the
assay limitations of the clinical DDI study [25]. Among the
other investigated DDIs, CLR was the inhibitor for which the
model provided the most accurate predictions when

compared to the observed data. Specifically, the model pre-
dicted an increase in plasma SV AUC and Cmax by 10.02-
and 6.49-fold respectively and 11.46- and 8.97-fold increase
in SVA AUC and Cmax respectively, following a week of co-
administration of 40 mg simvastatin with twice-a-day 500 mg
CLR. The agreement with the observed values was excellent
as the respective reported values were 9.95, 7.14, 12.17 and
10, respectively [26]. The model-predicted typical SV/SVA
concentration profiles not only in plasma but also in liver and
muscle tissues for this particular interaction are presented in
Fig. 6. The SV/SVA model-predicted typical plasma, liver
and muscle concentration profiles for the DDIs with ITZ,
ERY and DTZ are provided in Supplement 7 (Figures S7.6,
S7.7 and S7.8 respectively). The model predictions with re-
gard to the fold-increase in SV and SVA exposure in plasma,
liver and muscle tissue due to the investigated DDIs are
summarised in Table IV. For the ERY, CLR and DTZ
interactions which have a mechanism-based inactivation com-
ponent, the model-predicted fraction of active CYP3A

Fig. 4 Simulated typical concentration profiles for both SV (a) and SVA (b) in plasma, liver tissue and muscle tissue for individuals with the homozygous wild-type
TT (black line) and homozygous variant CC (red line) OATP1B1 c.521 T>C genotype. In (a) the TTand CC simulated concentration profiles are practically
identical as the polymorphism does not affect the lactone form (SV). In (b) the observed mean±SE plasma SVA concentrations for individuals with the TT (black
circles) and CC (red circles) genotype from Pasanen et al. [18] are also plotted.
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enzyme in the small intestinal wall and liver against time is
presented in Supplement 7 (Figures S7.9, S7.10 and S7.11
respectively).

DISCUSSION

SV/SVA Physiological Population PK Model

Besides the widespread use of simvastatin and the clinical
burden of muscle toxicity our understanding with regard to
the complex SV/SVA pharmacokinetics is still limited. In the
current work, a physiologically based population model was
developed that mechanistically describes the disposition of
both SV and SVA and their inter-conversion in different
tissues.

As the parameters of the developed model are mechanistic
in nature and represent actual physiological processes, they
were assessed in terms of physiological plausibility. In the
current model, most of the parameters are provided with
informative priors derived from in vitro/ in silico experiments

and physiology knowledge and therefore this approach in a
way guards against the probability that some of the parame-
ters are estimated outside their physiological range. As it can
be observed in Fig. 2 the model parameters provided
with informative priors converged to estimates which
are within the prior knowledge range. However, specific
attention should be given with regard to the physiolog-
ical plausibility of model parameters which either con-
verged to a region not particularly well covered by the
prior distribution (SV muscle tissue to unbound plasma
partition coefficient, KPuT:P,m) or those that due to lack
of information were not supported at all by informative
priors (e.g. SVA active uptake clearance into the hepa-
tocytes, CLuact). The arguments supporting the physio-
logical plausibility of the above two parameter estimates
are in particular discussed in Supplement 7 (section 2).

The estimates of the “rest of body” partition coefficients
cannot be interpreted per se as they refer to an empirical
peripheral space (see Supplement 1). However, the product
of the estimated partition coefficient and the known physio-
logical volume of the “rest of body” compartment (≈33 L) can
be indicative of the extent of the compound’s distribution in

Fig. 5 Overview of the degree of success of model predictions with regard to the investigated DDIs.Markers coloured in blue and red represent the effect of the
inhibitor on the PK parameters of SV and SVA respectively. Square and triangular markers refer to AUC and Cmax respectively. For example, a blue square marker
refers to the effect of the inhibitor on SV AUC. The name of the inhibitor is specified next to each marker. Black solid line represents the line of identity between
observed and predicted values; dashed and dotted lines represent the 1.5- and 2-fold error intervals respectively. All the exact predicted and observed fold-
increase values are reported in Supplement 7 (Table S7.2).
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this empirical peripheral space. The tissue to plasma partition
coefficients for the rest of the body compartment were esti-
mated 10.9 and 0.53 for SV and SVA respectively. Similarly,
the muscle tissue to plasma partition coefficients were estimat-
ed as 57.8 and 0.08 for SV and SVA respectively. These
results are in agreement with the SV and SVA physicochem-
ical properties. Specifically, they indicate that the highly lipo-
philic lactone form (SV) is extensively distributed into several
tissues, in contrast to the much more hydrophilic acid form
(SVA) for which distribution is mainly limited to tissues with
active uptake capability (liver). Apart from the increased
mechanistic understanding of the SVA disposition, the results
of the current work also highlight that the assumption of equal
volumes of distribution of themetabolite (SVA) and the parent
drug (SV) that has been used before in SV/SVA population
models [27] (to resolve identifiability issues) is unjustifiable.

The developed model also provides further insight regard-
ing the complex inter-conversion process between SV and
SVA in the different tissues. After calculation of the SV-SVA
inter-conversion rate constants applied in the different model
compartments (Supplement 7, Table S7.1) it is obvious that

the compartment that has the highest capability of SV to SVA
hydrolysis is by far liver tissue. This is in agreement with
previous experimental work that identified the liver as the
t i s sue having the most abundant expres s ion of
carboxylesterases in humans [28] and together with previous
knowledge that the liver is the tissue that SV is mainly bio-
activated to SVA [1]. In addition, the developed model also
accounted for the SV to SVA hydrolysis in plasma and the
small intestinal wall. Although the latter is acknowledged in
the literature [29,30], it has never been quantified prior to this
work. Our estimate regarding the SV to SVA hydrolysis in the
small intestinal wall can be considered as mechanistically
sound. This is based on the fact that the associated hydrolysis
rate constant (Supplement 7, Table S7.1) is higher than the
hydrolysis rate constant observed in vitro in a pH 7.4 buffer
(where hydrolysis is mediated only chemically) but much
smaller than the hydrolysis rate in the liver tissue (the tissue
with the most abundant expression of carboxylesterases). It
should be also noted that although the capability of the small
intestinal wall for SV to SVA hydrolysis is much smaller
compared to the liver, it is a process that should not be

Fig. 6 Model simulated typical concentration profiles for both SV (a) and SVA (b), in plasma, liver tissue and muscle tissue, after multiple doses of 40 mg
simvastatin administered with (red line) or without (black line) clarithromycin (CLR) 500 mg twice-a-day. The small irregularities (secondary peaks) observed in the
liver SVA concentrations occur at times that CLR doses were administered and are a consequence of SV to SVA hydrolysis.
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neglected as the amount of SV available for hydrolysis in this
tissue is substantial. Consequently, the plasma concentrations
of SVA are particularly sensitive to this process. Finally, the
presented model also mechanistically described the back-
conversion (lactonisation) of SVA to SV. The lactonisation
rate constant in the liver tissue was much smaller than the
hydrolysis rate constant in the same tissue (Supplement 7,
Table S7.1), indicating that the formation of SVA is signifi-
cantly favoured inside the liver. In addition, the magnitude of
the back-conversion (recycling) process was determined to be
minor, as in a typical individual the recycling fraction (FREC)
parameter was calculated to be 0.91%. These results are in
agreement with a previous in vivo study (dogs) which also
suggested a minor involvement of SVA back-conversion and
a fraction recycled of <1% [4]. However, the incorporation of
this process in the model is important due to the fact that the
liver concentrations of SVA (related to efficacy) can be partic-
ularly sensitive to perturbations of the components of this
inter-conversion process (from sensitivity analysis, data not
shown).

The mechanistic structure of the model allowed also the
investigation of simvastatin bioavailability (F) and its constitu-
ent components (Fa, Fg and Fh). The bioavailability of
simvastatin was predicted for a typical individual to be
4.21%, which is in agreement with the current knowl-
edge that less than 5% of a simvastatin dose reaches the
circulation system in humans [1]. This provides addi-
tional confidence that the model adequately captures
the first pass metabolism of SV.

Overall, the developed model offered a very accurate de-
scription of the observed data and their variability illustrating
the suitability of the nonlinear mixed effects modelling ap-
proach to analyse population data even with such complex
PBPKmodels. The long computational times represent one of
the main obstacles during the development of these popula-
tion models. However, we illustrated in this work that even
this hurdle can be further diminished with the application of
alternative estimation methods (e.g. IMPMAP, see
Supplement 2) which can be fast and efficiently parallelisable
for such complex differential equation models [31].

Before continuing to the discussion of the model applica-
tions, a particular model assumption with regard to the dis-
position of SVA has to be highlighted. It has been assumed in
this work that the distribution of SVA in the muscle is
perfusion-limited and not transporter mediated. There is
some evidence suggesting that the OATP2B1 transporter
may be responsible for the active uptake of other statins
(atorvastatin and rosuvastatin) into human skeletal muscle
[32]. However, despite the substantial research associated
with simvastatin-induced myopathy, to our knowledge, there
is no evidence with regard to the specific mechanism by which
SVA permeates into human muscle tissue. Therefore, as the
contribution of active uptake of SVA in muscle tissue remains
unclear and in the absence of observed SVA muscle tissue
concentrations, the model assumption of perfusion-limited
distribution derives from lack of information. However, as this
model assumption can affect the predicted SVA concentra-
tions in the muscle tissue, it should be clearly underlined.
Hopefully, future research will shed some light into this im-
portant aspect of SVA disposition.

Model Applications

The developed model was used to extrapolate beyond the
studied population and experimental conditions. The scenar-
ios investigated here (OATP1B1 polymorphism and CYP3A
inhibition) are of substantial clinical interest as they both have
been associated with the development of simvastatin-induced
myopathy. In addition, taking advantage of the physiological
structure of the model we were able to determine the effects of
these conditions not solely on the plasma concentrations of SV
and SVA, but also on the concentrations in the sites relevant
to the efficacy (liver) and toxicity (muscle) of the drug.

Effect of the OATP1B1 c.521 T>C (CC) Genotype on SVand SVA
Disposition

The SV/SVA model was able to successfully describe the
observed plasma data from a previous pharmacogenetic study
regarding the OATP1B1 (SLCO1B1) c.521 T>C (rs4149056)
polymorphism (Fig. 4). The application of a single covariate
term in the model parameter where this polymorphic effect is

Table IV Model predicted DDI effect on SV/SVA plasma, liver and muscle
tissue exposure

Plasma Liver Muscle

Itraconazole (ITZ)

SV 7.95 8.14 7.40

SVA 8.53 33.18 8.53

Erythromycin (ERY)

SV 5.59 5.70 5.28

SVA 5.80 16.94 5.80

Clarithromycin (CLR)

SV 10.02 10.46 9.12

SVA 11.46 61.93 11.46

Diltiazem (DTZ)

SV 3.88 3.93 3.72

SVA 3.96 9.20 3.96

The values reported above represent the fold-increase in SV and SVA expo-
sure (AUC) in plasma, liver and muscle tissue caused by each of the investi-
gated DDIs. Plasma, liver and muscle tissue exposures were predicted by
simulation with the developedmodel until 24 h post-SV-dose. For all inhibitors
the SV dose was 40 mg apart from DTZ where a 20 mg dose was given. For
CLR where multiple SV doses where given, the reported fold-increase in
exposure refer to the last dosing interval
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manifested, the SVA active uptake clearance (CLuact), was
enough to adequately capture the effects of the homozygous
variant CC genotype on the SVA plasma concentrations. This
provided further evidence that the model structure, assump-
tions and parameters are mechanistically robust. The ability
to apply this covariate directly on the parameter where it
mechanistically lies is a significant advantage of this physio-
logical model over previous population models with empirical
structures, where the effect of the OATP1B1 genotype had to
be applied to the surrogate clearance and volume terms [9]. In
the current work we identified that the SVA in vivo active
uptake clearance into the hepatocytes (CLuact) in individuals
with the homozygous variant CC genotype is approximately
10% of the value assigned to the homozygous wild type
subjects. This is in agreement with the current literature as
taking in to account previous findings of both in vitro and in vivo
approaches [33–36], it was expected that this estimate should
lie within the range of 0–35%.

It was observed in our simulations that this OATP1B1
polymorphism does not affect the concentration profiles of
the lactone form (SV), (Fig. 4a). This is in agreement with the
findings of a previous pharmacogenetic study [18] and it is
justifiable based on the fact that the highly lipophilic lactone
form can readily penetrate the hepatocytes through passive
diffusion and therefore does not depend on OATP1B1 activ-
ity. In contrast, the concentration profiles of the much more
hydrophilic acid form (SVA) were substantially affected by this
polymorphism (Fig. 4b). It should be noted that themagnitude
of the back-conversion process from SVA to SV is so small
(discussed above) that these changes in SVA disposition can-
not propagate back to the lactone concentrations. Our results
indicated that the homozygous variant CC genotype for the
OATP1B1 polymorphism significantly increases SVA expo-
sure in plasma and muscle tissue (Fig. 4b). More specifically
the degree of this increase in plasma and muscle is compara-
ble. These model predictions are in agreement with the clin-
ically observed effects of this polymorphism which has been
robustly and repeatedly associated with simvastatin induced
myopathy [37]. However, although our results suggest that
the polymorphism effect on SVA plasma exposure very well
reflects the situation in muscle tissue, this is not the case with
regard to the effect at the drug’s site of action (liver).
Specifically, it was observed that in individuals having the
homozygous variant CC genotype for this polymorphism,
the SVA liver exposure is only marginally affected (decreased
approximately by only 2%), (Fig. 4b). This model prediction is
in agreement with the clinically observed data which suggest
that this OATP1B1 polymorphism has not been associated
with any clinically significant alterations in the cholesterol
lowering efficacy of simvastatin [8]. Specifically, among
16,664 genotyped participants of the Heart Protection
Study, the reduction in the LDL cholesterol level was only
2.56% smaller in the homozygous variant CC subjects [37].

Hence, what is illustrated here is an interesting case where the
polymorphism effect on the concentrations at the drug’s site of
action diverges from the effect on plasma concentrations.
Consequently it is inappropriate to link plasma concentration
to the efficacy of the drug which has to be related to the local
tissue concentrations. The model predictions that illustrate
that SVA liver exposure is not sensitive to changes in active
uptake clearance are also in agreement with previous model-
ling work with other OATP1B1 substrates, pravastatin [38]
and rosuvastatin [36]. As it has been repeatedly discussed and
illustrated in the literature [38,39], this effect is due to the fact
that for compounds which permeate the hepatocytes predom-
inately by active uptake and their elimination is primarily
hepatic, their liver exposure is determined by either the met-
abolic and/or biliary clearance rather than active uptake (see
also Supplement 8 for an analytical justification of this con-
cept). However, to the best of our knowledge this is the first
time that the above concept has been mechanistically illustrat-
ed in the case of the active metabolite of simvastatin, SVA. In
contrast to pravastatin and rosuvastatin which are adminis-
tered in the active open acid form, in the case of simvastatin
the additional process of SVA formation inside the liver tissue
has to be considered adding further complexity.

Effect of Clinically Important DDIs on SV and SVA Disposition

The second model application investigated in this work was
the prediction of the effects of a range of different CYP3A
inhibitors on the pharmacokinetics of both SV and SVA. The
developed model very adequately predicted the reported in-
crease in SV and SVA plasma AUC and Cmax associated
with these clinically important DDIs (Fig. 5). It is important to
note that these predictions were performed without the use of
any clinical interaction data to optimise model parameters
associated with the inhibition. The ability of the developed
model to successfully predict the interaction effects not solely
on SV but also on SVA is of particular importance. As SVA is
the active form, prediction of the interaction effects on SVA
concentrations is crucial in order to investigate the effects on
both the toxicity and therapeutic efficacy of the drug and
suggest possible dose adjustments. In addition, the ability of
the current model to successfully predict the interaction effects
on both SV and SVA forms, serves as an additional model
validation illustrating that the lactone to acid conversion in the
sites of interaction (small intestinal wall and liver) is adequately
described. Although physiologically-based models for the dis-
position of simvastatin have been published before [35,40], to
our knowledge this is the first time where such a model has
been successfully validated for its ability to simultaneously
predict interaction effects on both SV and SVA forms.

The effects of these clinically important DDIs were also
investigated with regard to the liver and muscle SV/SVA
concentrations. All the evaluated DDIs were predicted to
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cause a substantial increase in the muscle exposures of both
SV and SVA (Fig. 6 and Supplement 7: Figures S7.6–S7.8).
Specifically, the fold-increase in SV and SVA muscle expo-
sures ranged from 3.72 and 3.96 respectively for the diltiazem
DDI, up to 9.12 and 11.46 for the clarithromycin DDI
(Table IV). These substantial model-predicted increases in
SV/SVAmuscle exposure are in agreement with the clinically
reported fatal cases of rhabdomyolysis related to such DDIs
[41]. They are also in line with the current recommendations
which state that co-administration of simvastatin with
clarithromycin, itraconazole and erythromycin is contraindi-
cated, while diltiazem is allowed only in the lowest 10 mg dose
[8]. In contrast to the effect of the OATP1B1 polymorphism,
the liver exposure of active form (SVA) was predicted to be
substantially affected by CYP inhibition. This effect is expect-
ed since the liver exposure of such a compound is particularly
sensitive to changes in metabolic clearance (as discussed above
and in Supplement 8). All the investigated DDIs were predict-
ed to substantially increase the liver exposure of both SV and
SVA (Fig. 6, Supplement 7: Figures S7.6–S7.8). Specifically,
the fold-increase in SV and SVA liver exposures ranged from
3.93 and 9.20 respectively for the diltiazem DDI, up to 10.46
and 61.93 for the clarithromycin DDI (Table IV).
Interestingly, it was observed that the fold-increase in the liver
exposure of the active form (SVA) is much more pronounced
than the fold-increase in the liver exposure of the lactone (SV)
for all the evaluated DDIs. This is justifiable as due to the
inhibition of the CYP3A metabolism of SV much more drug
is available locally inside the liver to be converted through
hydrolysis to the active form (SVA), the CYP3Ametabolism of
which is also inhibited. This leads to a substantial increase in
the local liver concentrations of SVA, which due to its phys-
icochemical properties and low passive diffusion clearance is
“trapped” in the hepatocytes. The model-predicted substan-
tial increase in the liver exposure of the active SVA form due
to CYP inhibition is in agreement with clinical findings dem-
onstrating that the cholesterol reduction efficacy of simvastatin
is significantly enhanced when co-administrated with diltia-
zem [42].

Dose Reduction Considerations

Overall, from the investigated conditions and the model pre-
dictions, it can be concluded that a simvastatin dose reduction
in the case of co-administration with a CYP3A inhibitor can
decrease the risk of muscle toxicity, while patients are achiev-
ing the recommended cholesterol reduction. This is because
the decreased SVA liver exposure due to the dose reduction
can be counterbalanced with the effect of the DDI (increase in
the SVA liver exposure). On the other hand a dose reduction
in the case of decreased OATP1B1 uptake clearance (due to
polymorphism or inhibition) can decrease the risk of muscle
toxicity, but patients might receive a sub-therapeutic dose (as

SVA liver exposure is unaffected by the decrease in active
uptake clearance). However, large scale clinical data are
needed to further investigate and validate these model-
derived conclusions.

Further Comments Regarding the Applied Integrated
Population PBPK Approach

Parameter estimation in complex PBPK models is increasing-
ly performed in the last few years due to the advances in
computational power and the development of specialised
modelling and simulation platforms. For this reason, we re-
cently published a paper specifically focused on the discussion
of best practices and methodological issues related to param-
eter estimation in PBPK models [10]. The current work aims
to illustrate such a process in practice and provide an example
of an integrated population PBPK approach to analyse clin-
ical data. We have previously highlighted that such an ap-
proach combining physiologically-based with nonlinear
mixed effects modelling and parameter estimation techniques
can provide mechanistically sound models at the population
level [10]. Some additional advantages of this approach have
to be underlined. Firstly, the physiological structure of these
models, allows extrapolation outside the studied population
and experimental conditions. This was specifically illustrated
in this work with the development of a population mechanistic
SV/SVA model using data from clinical studies, which was
subsequently used to successfully extrapolate and perform
predictions outside the studied conditions (e.g. CYP3A inhibi-
tion). Secondly, as such mechanistic models can provide tissue
concentration predictions, the efficacy and toxicity of a drug
do not need to be linked to the surrogate plasma concentra-
tions. This was particularly illustrated in this work by
performing predictions for the effects of clinically important
conditions (OATP1B1 polymorphism, CYP inhibition) not
only on SV/SVA plasma but also on liver and muscle con-
centrations. The model-predicted effects on the local tissue
concentrations were in agreement with the clinically observed
cholesterol lowering effects and toxicity outcomes of these
conditions. Finally, such an approach can inform and guide
the design of prospective clinical DDI and/or pharmacoge-
netic studies even in the first stages of drug development when
in vivo data are limited. Power calculation prior to such studies
is based on an educated guess on the magnitude of the clinical
effect and the associated population variability [24].
Population mechanistic models can take advantage of their
physiological structure and their ability to extrapolate to pro-
vide predictions for the former (e.g., using in vitro data); and
their stochastic level to provide predictions for the latter. This
concept has been specifically highlighted in one of our recent
publications where power calculations were performed to
guide prospective DDI and pharamacogenetic studies with
regard to repaglinide pharmacokinetics [24].
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Crucial for the development of population PBPKmodels is
the concept of prior information. The advantages of utilising
prior knowledge in the PBPK modelling framework are nu-
merous and have been described elsewhere [10,11]. The most
important is that it allows knowledge from several sources (e.g.
in vitro experiments) to be integrated with the analysed clinical
data, supporting parameter identifiability in these complex
models. Prior information is typically incorporated in hierar-
chical population models throughMarkov chainMonte Carlo
(MCMC) Bayesian estimation [43]. Compared to a typical
MCMC Bayesian analysis, the maximum a posteriori method
used in the current work (see Methods) to incorporate prior
information has the inherent disadvantage that it produces
point parameter estimates rather than posterior distributions.
However, this method retains all the advantages deriving from
the use of prior information while also offering stability and
significant reductions in the computation time that would
have been required for a MCMC Bayesian analysis [13].
This is of particular importance as besides the rapid advances
in computer science, computation times still represent a sig-
nificant burden during the development of such complex
models. It should be also noted that in the current work the
available prior knowledge with regard to drug-related model
parameters derives solely from in vitro experiments and in silico
predictions and not from any previousmodel fittings of clinical
data. This incorporates an additional limitation as some mod-
el parameters (especially the random effect inter-individual
variability terms) are completely unknown and were provided
with non-informative priors. Therefore, it is expected that a
MCMC Bayesian analysis in such a complex model might
need very long run times or face difficulties to achieve stable
MCMC chains and accomplish convergence with regard to
these parameters [31,44], especially as only plasma concen-
trations are observed. On the other hand the maximum a
posteriori method used in this work displayed remarkable
stability for such a complex model, did not face any conver-
gence issues and was able to precisely estimate even the model
parameters for which informative priors were not provided.
However, we should clearly state that a formal MCMC
Bayesian analysis should be preferable when it is possible,
due to the significant advantages deriving from having the
complete posterior distribution [45].

We suggest future application of the developed population
model to SV/SVA clinical data to be also performed within
the same framework. Specifically, we suggest the parameter
estimates of the developed model and their associated uncer-
tainty to be used as priors for the analysis of new SV/SVA
clinical data either with a maximum a posteriori or with a
formal Bayesian MCMC method. Within this framework a
continuous flow of information is achieved that produces
incremental gains with regard to our knowledge of the studied
system/drug. This is particularly illustrated when considering
that the presented work can provide a future analysis with

strong informative priors with regard to all complex model
parameters (both fixed and random effects), while much more
limited prior information deriving mostly from in vitro / in silico
experiments was available to us.

The current work is limited by the absence of human liver
and muscle tissue concentrations. This is a limitation inherent
in the majority of human PBPKmodels due to the ethical and
experimental difficulties to access local tissue concentrations.
In the absence of such data the muscle and liver concentration
predictions of the current model cannot be quantitatively
validated and rely on the underlying modelling assumptions.
However, the model predictions were at least qualitatively
validated through their agreement with the clinically observed
efficacy and toxicity outcomes of the investigated conditions.
In addition, the availability of tissue concentrations is not only
important for model validation, but within the presented
population PBPK framework, tissue data can provide the
additional information needed to support identifiability with
regard to model parameters that cannot be solely informed
from plasma data. The estimation of these parameters was
made possible in the current work with the provision of strong
informative priors derived from in vitro experiments.
Nevertheless, it was clearly illustrated that in such a situation
the parameter estimates shrink towards the prior (e.g., param-
eters describing the SV/SVA inter-conversion process at the
liver tissue level). On the contrary availability of tissue con-
centrations would have allowed the in vitro knowledge to be
updated in the light of the observed tissue data. This is of
particular importance as parameter values derived from in vitro
- in vivo extrapolation (IVIVE) may carry a certain degree of
inaccuracy and/or imprecision. Given all the above, it is the
authors’ view that an integrated population PBPK approach
as the one presented here, if combined with emerging ad-
vanced experimental methods able to determine intracellular
concentrations noninvasively [46], can be a powerful tool to
further understand drug disposition.

CONCLUSION

In conclusion, the present work provides further insight in the
complex pharmacokinetics of SV and its active metabolite,
SVA, in humans. The developed model can be of clinical
application due to the widespread use of simvastatin and the
clinical burden of muscle toxicity [8]. Furthermore, it can be
of significant use during drug development for assessing DDI
risk of compounds likely to be co-administered with simva-
statin. Finally, in the current work the advantages of an
integrated population PBPK approach that provides mecha-
nistically sound models at the population level were clearly
illustrated.
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